教學(xué)目標(biāo):能熟練地根據(jù)拋物線的定義解決問題,會(huì)求拋物線的焦點(diǎn)弦長(zhǎng)。
教學(xué)重點(diǎn):拋物線的標(biāo)準(zhǔn)方程的有關(guān)應(yīng)用。
教學(xué)過程:
一.復(fù)習(xí):
1、拋物線的定義:平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線。點(diǎn)F叫做拋物線的焦點(diǎn),直線l叫做拋物線的準(zhǔn)線。
2、拋物線的標(biāo)準(zhǔn)方程:
,,
二.新授:
例1、點(diǎn)M與點(diǎn)F(4,0)的距離比它到直線l:x+5=0的距離小1,求點(diǎn)M的軌跡方程。
解:略
例2、已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離等于5,求拋物線的方程和m的值。
解:略
例3、斜率為1的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于兩點(diǎn)A、B,求線段AB的長(zhǎng)。
解:略
點(diǎn)評(píng):1、本題有三種解法:一是求出A、B兩點(diǎn)坐標(biāo),再利用兩點(diǎn)間距離公式求出AB的長(zhǎng);二是利用韋達(dá)定理找到x1與x2的關(guān)系,再利用弦長(zhǎng)公式|AB|=求得,這是設(shè)而不求的思想方法;三是把過焦點(diǎn)的弦分成兩個(gè)焦半徑的和,轉(zhuǎn)化為到準(zhǔn)線的距離。
2、拋物線上一點(diǎn)A(x0,y0)到焦點(diǎn)F()的距離|AF|=這就是拋物線的焦半徑公式,焦點(diǎn)弦長(zhǎng)|AB|=x1+x2+p 。
例4、在拋物線上求一點(diǎn)p,使p點(diǎn)到焦點(diǎn)F與到點(diǎn)A(3,2)的距離之和最小。
解:略
三、做練習(xí):第119頁(yè)第5題
四、小結(jié): 1、求拋物線的標(biāo)準(zhǔn)方程需判斷焦點(diǎn)所在的坐標(biāo)軸和確定p的值,過焦點(diǎn)的直線與拋物線的交點(diǎn)問題有時(shí)用焦點(diǎn)半徑公式簡(jiǎn)單。
2、焦點(diǎn)弦的幾條性質(zhì):設(shè)直線過焦點(diǎn)F與拋物線相交于A(x1,y1),B(x2,y2)兩點(diǎn),則:①;②;③通徑長(zhǎng)為2p;④焦點(diǎn)弦長(zhǎng)|AB|=x1+x2+p 。
五、布置作業(yè):習(xí)題8.5第4、5、6、7題
中考 高考名著
常用成語(yǔ)
新學(xué)網(wǎng) Copyright (C) 2007-2018 版權(quán)所有 All Rights Reserved. 豫ICP備09006221號(hào)