教學建議
教材分析
約數和倍數的意義是在學生已經學過整除知識的基礎上進行教學的,這部分內容是后面學習質數和合數、質因數、分解質因數、求最大公約數、求最小公倍數等知識必須具備的基礎知識,所以是本單元中最基本的概念.
教材在復習“整除”的基礎上概括出“整除”這個概念,然后引出約數和倍數的概念.在整數范圍內,除法算式可以分為整除和不能整除兩大類.引入了小數以后,除法算式又可以分除盡和除不盡兩大類.這里的除盡,不但包含了整除的情況,還包含了被除數、除數或商是有限小數的情況,所以在教學中要列舉各種有代表性的實例,讓學生通過對算式中被除數、除數與商各種不同情況的觀察、比較,使整除的概念從除盡的概念中分化出來.從而理解整除的意義,明白整除與除盡的關系.
學生學過約數和倍數的意義后往往把“倍數”和“幾倍”混同起來,所以教學時應通過對比練習,使學生悟出兩者的區(qū)別(可以說8是4的倍數,也可以說8是4的2倍;但是不可以說0.8是0.4的倍數,只能說0.8是0.2的2倍),從而進一步理解和掌握約數和倍數的本質.
教法建議
約數和倍數的意義是在學生已經學過整除知識的基礎上進行教學的,這部分內容是后面學習質數和合數、質因數、分解質因數、求最大公約數、求最小公倍數等知識必須具備的基礎知識,是本單元中最基本的概念.
復習引入時,教師要通過新舊知識的聯系,抓住生長點, 對已掌握的“整除”的意義進行復習,通過觀察算式的特征和結果,首先將算式分為除盡和除不盡兩大類,然后再對算式中被除數、除數與商各種不同情況的觀察、比較,使整除的概念從除盡的概念中分化出來.從而理解整除的意義,明白整除與除盡的關系.
約數和倍數是建立在整除的基礎上的,所以教學求一個數的約數和倍數的時候,首先要利用整除式幫助學生理解除數和商是被除數的一對約數,進而發(fā)現約數可以一對一對的找,在學生學會找約數的基礎上,教師可以給學生創(chuàng)設一個研討,發(fā)現約數特點的情景.學生掌握了約數的特點,更能提高找約數的能力.找倍數的方法學生很容易理解,難點是對一個數的倍數是無限的這個特點的認識,教師可以在練習中設計集合圈中加省略號和不加省略號兩種題目,讓學生通過對比討論加深認識.
教學設計示例
約數和倍數的意義
教學目標
1、掌握整除、約數、倍數的概念.
2、知道約數和倍數以整除為前提及約數和倍數相互依存的關系.
教學重點
1、建立整除、約數、倍數的概念.
2、理解約數、倍數相互依存的關系.
3、應用概念正確作出判斷.
教學難點
理解約數、倍數相互依存的關系.
教學步驟
一、鋪墊孕伏(課件演示:數的整除 下載)
1、口算
6÷5 15÷3 23÷7
1.2÷0.3 24÷2 31÷3
2、觀察算式和結果并將算式分類.
除 盡 | 除 不 盡 |
6÷5=1.2 15÷3=15 1.2÷0.3=4 24÷2=12 | 23÷7=3……2 31÷3=10……1 |
3、引導學生回憶:研究整數除法時,一個數除以另一個不為零的數,商是整數而沒有余數,我們就說第一個數能被第二個數整除.
4、尋找具有整除關系的算式.
板書: 15÷3=5 15能被3整除
5、分類
除 盡 | 除 不 盡 | |
不能整除 | 整 除 | |
6÷5=1.2 1.2÷0.3=4 | 15÷3=15 24÷2=12 | 23÷7=3……2 31÷3=10……1 |
二、探究新知
(一)進一步理解“整除”的意義.
1、整除所需的條件.
(1)分析: 24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余數)
6不能被5整除;(商是小數)
1.2不能被0.3整除;(被除數和除數都是小數)
(2)引導學生明確:第一個數能被第二個數整除必須滿足三個條件:
a、被除數和除數(0除外)都是整數;
b、商是整數;
c、商后沒有余數.
板書:整數 整數 整數(沒有余數)
15÷3=5
2、用字母表示相除的兩個數,理解整除的意義.
(1)討論:如果用字母a和b表示兩個數相除,那么必須滿足幾個條件才能說a能被b整除?
(板書:a÷b)
學生明確:a和b都是整數,除得的商正好是整數而沒有余數,我們就說a能被b整除.
(板書:a能被b整除)
(2)繼續(xù)討論:在什么情況下才能說a能被b整除?(板書: b≠0)
學生明確:整數a除以整數b(b≠0),除得的商是整數而沒有余數,我們就說a能被b整除(也可以說b能整除a).
3、反饋練習.
(1)下面的數,哪一組的第一個數能被第二個數整除?
29和 3 36和12 1.2和 0.4
(2)判斷下面的說法是否正確,并說明理由.
a.36能被12整除.( )
b.19能被3整除.( )
c.3.2能被0.4整除.( )
d.0能被5整除.( )
e.29能整除29.( )
4、“整除”與“除盡”的聯系和區(qū)別.
討論:綜合以上所學知識討論,“整除”和“除盡”有什么聯系?又有什么區(qū)別?
(舉例說明)
(二)約數、倍數的意義
1、類推約數、倍數的意義.
(1)教師講解:15能被3整除,我們就說15是3的倍數,3是15的約數.
(2)學生口述:
24能被2整除,我們就說,24是2的倍數,2是24的約數.
10能被5整除,我們就說,10是5的倍數,5是10的約數.
a能被b整除,我們就說a是b的倍數,b是a的約數.
(3)討論:如果用字母a和b表示兩個整數,在什么情況下才可以說a是b的倍數,b是a的約數?(在數a能被數b整除的條件下)
(4)小結:如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數).
2、進一步理解約數、倍數的意義.
(1)整除是約數、倍數的前提.學生明確:約數和倍數必須以整除為前提,不能整除的兩個數就沒有的數和倍數的關系.
(2)約數和倍數相互依存的關系.
學生明確:約數和倍數是一對相互依存的概念,不能單獨存在.
(3)反饋練習:
A、下面各組數中,有約數和倍數關系的有哪些?
16和2 140和20 45和15
33和6 4和24 72和8
B、判斷下面說法是否正確.
a、8是2的倍數,2是8的約數.( )
b、6是倍數,3是約數.( )
c、30是5的倍數.( )
d、4是歷的約數.( )
e、5是約數.( )
3、教師說明:以后在研究約數和倍數時,我們所說的數一般不包括零.
4、教學例2 :12的約數有哪幾個?
(1)引導學生合作學習,討論分析.
(2)匯報、板書:
12的約數有:1、2、3、4、6、12
(3)練習:15的約數有哪幾個?
(4)學生明確:
一個數的約數是有限的.其中最小的約數是1,最大的約數是它本身.
5、教學例3:2的倍數有哪些?
(1)引導學生合作學習,討論、分析.
(2)匯報、板書:
2的倍數有:2、4、6、8、10……
(3)練習:2的倍數有哪些?
(4)學生明確:
一個數的倍數的個數是無限的,其中最小的倍數是它本身.
三、全課小結
這節(jié)課,我們在進一步研究整除的基礎上又學到了什么?通過學習你知道了什么?
(板書課題:約數和倍數的意義)
四、隨堂練習
1、下面的說法對嗎?說出理由.
(1)因為36÷9=4,所以36是倍數,9是約數.
(2)57是3的倍數.
(3)1是1、2、3、4、5,…的約數.
2、下面的數,哪些是60的約數,哪些是6的倍數?
3 4 12 16 24 60
教師說明:一個數可以是另一個數的約數,也可以是某個數的倍數.
3、下面的說法對嗎?為什么?
(1)1.8能被0.2除盡.(。 1.8能被0.2整除.(。
1.8是0.2的倍數.( ) 1.8是0.2的9倍.(。
(2)若a÷b=10,那么:
a一定是b的倍數.(。a能被b整除.( )
b可能是a的約數.(。a能被b除盡.( )
五、布置作業(yè)
1、先寫出下面每個數的約數,再寫出下面每個數的倍數(按照從小到大的順序各寫5個)
10 13 36
2、在下面的圈里填上適當的數.
六、板書設計
約數和倍數的意義
探究活動
動腦筋離課堂
游戲目的
1、鞏固約數和倍數的意義.
2、樹立敢于探索的勇氣和信心.
游戲規(guī)則
老師出示一張卡片,如果學生的學號數是卡片上的數的倍數,就可以走開.走的時候,必須先走到講臺前,大聲說一句話,再走出教室.學生說的一句話,可以是“幾是幾的倍數”、“幾是幾的約數”或“幾能被幾整除’其中的任意一句.”
中考 高考名著
常用成語
新學網 Copyright (C) 2007-2018 版權所有 All Rights Reserved. 豫ICP備09006221號